Low-Rank PSD Approximation in Input-Sparsity Time
نویسندگان
چکیده
We give algorithms for approximation by low-rank positive semidefinite (PSD) matrices. For symmetric input matrix A ∈ Rn×n, target rank k, and error parameter ε > 0, one algorithm finds with constant probability a PSD matrix Ỹ of rank k such that ‖A− Ỹ ‖2F ≤ (1+ε)‖A−Ak,+‖ 2 F , where Ak,+ denotes the best rank-k PSD approximation to A, and the norm is Frobenius. The algorithm takes time O(nnz(A) log n) + npoly((log n)k/ε) + poly(k/ε), where nnz(A) denotes the number of nonzero entries of A, and poly(k/ε) denotes a polynomial in k/ε. (There are two different polynomials in the time bound.) Here the output matrix Ỹ has the form CUC>, where the O(k/ε) columns of C are columns of A. In contrast to prior work, we do not require the input matrix A to be PSD, our output is rank k (not larger), and our running time is O(nnz(A) log n) provided this is larger than npoly((log n)k/ ). We give a similar algorithm that is faster and simpler, but whose rank-k PSD output does not involve columns of A, and does not require A to be symmetric. We give similar algorithms for best rank-k approximation subject to the constraint of symmetry. We also show that there are asymmetric input matrices that cannot have good symmetric column-selected approximations.
منابع مشابه
Is Input Sparsity Time Possible for Kernel Low-Rank Approximation?
Low-rank approximation is a common tool used to accelerate kernel methods: the n × n kernel matrix K is approximated via a rank-k matrix K̃ which can be stored in much less space and processed more quickly. In this work we study the limits of computationally efficient lowrank kernel approximation. We show that for a broad class of kernels, including the popular Gaussian and polynomial kernels, c...
متن کاملInput Sparsity Time Low-rank Approximation via Ridge Leverage Score Sampling
Often used as importance sampling probabilities, leverage scores have become indispensable in randomized algorithms for linear algebra, optimization, graph theory, and machine learning. A major body of work seeks to adapt these scores to low-rank approximation problems. However, existing “low-rank leverage scores” can be difficult to compute, often work for just a single application, and are se...
متن کاملFixed-Rank Approximation of a Positive-Semidefinite Matrix from Streaming Data
Several important applications, such as streaming PCA and semidefinite programming, involve a large-scale positive-semidefinite (psd) matrix that is presented as a sequence of linear updates. Because of storage limitations, it may only be possible to retain a sketch of the psd matrix. This paper develops a new algorithm for fixed-rank psd approximation from a sketch. The approach combines the N...
متن کاملComputing Approximate PSD Factorizations
We give an algorithm for computing approximate PSD factorizations of nonnegative matrices. The running time of the algorithm is polynomial in the dimensions of the input matrix, but exponential in the PSD rank and the approximation error. The main ingredient is an exact factorization algorithm when the rows and columns of the factors are constrained to lie in a general polyhedron. This strictly...
متن کاملAdaptive Sampling and Fast Low-Rank Matrix Approximation
We prove that any real matrix A contains a subset of at most 4k/ + 2k log(k + 1) rows whose span “contains” a matrix of rank at most k with error only (1 + ) times the error of the best rank-k approximation of A. We complement it with an almost matching lower bound by constructing matrices where the span of any k/2 rows does not “contain” a relative (1 + )-approximation of rank k. Our existence...
متن کامل